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CONTEXT

This document presents the core thesis
underpinning a programme that
has now launched.

Sign up here to receive all updates about
this live programme.

An ARIA programme seeks to unlock a scientific or
technical capability that
+ changes the perception of what’s possible or valuable
+ has the potential to catalyse massive

social and economic returns
+ is unlikely to be achieved without ARIA’s intervention

UPDATE: OUR THINKING, EVOLVED
A summary capturing the evolution of our thinking since publication.

Since publishing v1.0 of this thesis in February 2024 we have invited public feedback on our ideas and engaged
with experts to challenge and refine our thinking. The following key learnings have emerged from that process
so far and have evolved our original approach, and have been incorporated into the programme:

+ Understanding the needs of application areas is critical early. In response to feedback about de-risking
applicability, we have chosen to stage the TA3 Applications Phase 0 solicitation second (immediately
following TA1.1 Theory) instead of last, so that TA3 creators can inform use-inspired assessments and
requirements sooner rather than later. This is reflected in the updated thesis below (in the “How we expect
to fund” section on page 11).

+ We are continuing to develop our thinking on the programmatic structure of TA2 Machine Learning.
There may be changes to this structure in a future version of this programme thesis.

PROGRAMME THESIS, SIMPLY STATED
This programme thesis is derived from the ARIA Opportunity Space: Mathematics and modelling are the keys
we need to safely unlock transformative AI.

Imagine a future where advanced AI powers breakthroughs in science, technology, engineering, and medicine,
enhancing global prosperity and safeguarding humanity from disasters—but all with rigorous engineering safety
measures, like society has come to expect from our critical infrastructure. This programme shall prototype and
demonstrate a toolkit for building such safety measures, designed to channel any frontier AI’s raw potential
not only responsibly, but legibly and verifiably so.

This programme envisions a pathway to leverage frontier AI itself to collaborate with humans to construct a
“gatekeeper”: a targeted AI whose job is to fully understand the real-world interactions and consequences
of an autonomous AI agent, and to ensure the agent only operates within agreed-upon safety guardrails and
specifications for a given application. These safeguards would not only reduce the risks of frontier AI and
enable its use in safety-critical applications, they would also unlock the upside of frontier AI in business-critical
applications and commercial activities where reliability is key (unlike entertainment, media, advertising, and sales).
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At the end of the programme, we aim to show a compelling proof-of-concept demonstration, in at least one narrow
domain, where AI decision-support tools or autonomous control systems can improve on both performance and
robustness versus existing operations, in a context where the net present value attainable by full deployment
is estimated to be billions of pounds. Some examples of potential such early demonstration areas include:
balancing electricity grids, supply chain management, clinical trial optimisation, and 5G beamforming/subchannel
allocation for mobile telecommunications networks.

If successful, this would in turn produce a scientific consensus that “AI with quantitative safety guarantees” is a viable
R&D pathway that yields key superhuman capabilities for managing cyber-physical systems, unlocking positive
economic rewards—while also building up large-scale civilisational resilience, thereby reducing risks from
humanity’s vulnerability to potential future “rogue AIs”[5,22] to an acceptable level within an acceptable time frame.

PROGRAMME THESIS, EXPLAINED
A detailed description of the programme thesis, presented for constructive feedback.

Why this programme

As artificial intelligence becomes exponentially more capable, it has the potential to dramatically improve physical
health, economic well-being, and human empowerment, on a scale exceeding the industrial revolution—if
deployed wisely[18]. But the current AI development pathway poses severe risks: leading AI researchers and
CEOs have all acknowledged that “mitigating the risk of [human] extinction from AI should be a global priority,
alongside other societal-scale risks like pandemics and nuclear war”[21].

Current work on mitigating this risk is focused primarily on a set of techniques which aim to keep the structure
and interface of pretrained frontier AI models intact, while making them safer. These techniques deliver
incremental benefits, but have serious limitations, and empirically cannot be relied upon to ensure safety, even in
combination[23]. To illustrate, two central examples are:

+ Evals, which comprise a finite set Q of “questions” (also known as “prompts” or input strings) on which
the evaluator examines a Monte Carlo sample of the frontier AI model’s “answers” (also known as output
strings) and thereby estimates a propensity of unsafe behaviours, to be quantified before deployment:
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Limitations:
– One can obtain confidence that there is a safety problem by uncovering one in an eval, but if no

problems are uncovered, this provides very little confidence about whether a safety problem could
still emerge if a user employs alternative prompting strategies that are not represented in Q.

– Users can invoke deployed models in complex recursive ways (“scaffolding”), which greatly expands
the space of possible operating conditions that are not checked in an eval. Even if an advanced eval
does test some scaffolds, the space of potential scaffolds is even more exponential than input strings.

+ Red-teaming, in which groups of highly skilled users of AI are tasked with evoking the most unsafe possible
outputs from the model, and if they can’t find any problems, then the model can be deployed:
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Limitations:
– Since it involves in-depth interaction with humans, red-teaming is not very scalable.

– Although humans can exercise some ingenuity in surfacing problems, still, fundamentally, they cannot
try everything, and the red-teaming exercise gives very little assurance of what the model might do
outside the test coverage.

ARIA Copyright 2024 p. 2 / 19



We would prefer a probabilistic guarantee that universally quantifies over an infinite family I of plausible
initial conditions C of the deployment environment:

if ∀C ∈ I,E
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system

Deployment environment

However, very little R&D effort is currently going into approaches that provide quantitative safety guarantees
about the deployment—even compared to AI safety as a whole—because this standard is commonly considered
either impossible or impracticable: either it won’t work, or if it does work, it would take too long and not provide
enough value, compared to direct use of frontier models.

One emerging but underexplored approach is the concept of a “gatekeeper” safeguard that formally verifies
proof certificates which can be produced by a frontier model itself (with different fine-tuning and scaffolding).

A gatekeeper safeguard would have 3 distinct AI components each building on pre-trained frontier models:
1. frontier models adapted to iteratively construct an explainable, auditable, scientific mathematical model

of the task-relevant aspects of the real world, and build on this to define quantitative specifications of
safety criteria (as well as of task success);

2. frontier models adapted to use in-context learning to drive a proof search to prove certain probabilistic
quantitative bounds (on the behaviour of certain cyber-physical systems when neural networks acting as
autonomous AI systems are deployed into them), and produce proof certificates (which can be checked by
a proof-checker that is itself formally verified); and

3. a variant of a deep reinforcement learning training loop which adapts (by fine-tuning, policy-gradient
optimisation, pruning, distillation, low-rank decomposition, or otherwise) a powerful frontier AI model to
become a neural network with high verifiability (to be verified by the previous method).

Figure 1: The “gatekeeper” approach can be seen as an overall workflow to produce safe AI systems.
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The goal of this programme is to demonstrate that a “gatekeeper” workflow like this can be a viable, universal
solution for safeguarding many economically and socially valuable applications of AI.

We’ll do that by demonstrating the following:

TA1. That an extendable, interoperable language and platform can be built to maintain real-world models and
specifications and check proof certificates.

TA2. That we can use frontier AI to help domain experts build best-in-class mathematical models of real-world
complex dynamics with relevance to valuable applications, and leverage frontier AI to train autonomous
systems that can be verified with reference to those models.

TA3. That a gatekeeper-safeguarded autonomous AI system deployed in a critical cyber-physical operating
context can unlock significant economic value with quantitative safety guarantees.

If we’re successful with any of these demonstrations, we believe this programme will be valuable. If we succeed
in all three, we believe we will have elucidated a viable and scalable path to safe transformative AI.

Our most aspirational theory of change is: if we can catalyse a global scientific consensus that
+ there is a feasible R&D pathway which uses frontier AI systems only via assemblages that provide quantitative

safety guarantees,
+ that one eventual application of these safety-critical assemblages is defending humanity against

potential future rogue AIs[5,22] enough to reduce the risks to an acceptable level,
+ and that this milestone could be achieved, thereby making it safe to unleash the full potential of superhuman
AI agents, within a time frame that is short enough (<15 years),

+ and with enough economic dividends along the way (>5% of unconstrained AI’s potential value)—
then this would enable a new, cooperative Nash equilibrium in the global strategic landscape around frontier AI,
enabling players to agree to follow this pathway (according to some plausible modelling assumptions; see Figure 2
and Appendix B).

Figure 2: In a simplified game-theoretic model of the choice that strategic players face (about whether
to commit to a lengthy process of ending the acute risk period while using superhuman AI only
inside systems with quantitative safety guarantees), the Nash equilibrium structure depends critically
upon the required duration and the intermediate economic benefits (as a fraction of the net profit of
unconstrained AI). See Appendix B for more details on these modelling assumptions.
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What we expect to fund
The programme is broken out into 3 technical areas (TAs), with the following names and top-level goals:

TA1 Scaffolding: Challenging the claim that “it’s not possible to formally specify what it means for a system
to be safe in the real world” by demonstrating a tool that non-mathematician domain experts can use to
develop and refine quantitative models and specifications about their systems of interest (e.g. power grids,
epidemics, R&D roadmaps), with cross-domain interoperability (e.g. a lockdown changes the demand
patterns on the power grid; a vaccine R&D process changes the epidemic). TA1 also includes a proof
language and checker intended for AI systems to hook into to check if their outputs are verifiable (and iterate
until they are).

TA2 Machine Learning: Challenging the claim that “even if it were possible to specify real-world safety,
it wouldn’t be economically competitive to train an AI system that provably satisfies such a spec” by
demonstrating empirically (albeit in simulation) a learned controller for a complex system of significance,
that has verifiable quantitative probabilistic safety bounds, and achieves both better performance and better
resilience to adverse events than non-certified baselines.

TA3 Applications: Challenging the claim that “even if you could train AI systems that provably satisfy their specs,
no one would really use them, as the economy would only adopt mainstream AI instead” by demonstrating
that the barriers to adoption in significantly valuable application domains can be overcome, leading to an
organisation maintaining an actual production deployment in practice.

Technical Area 1 (TA1): Scaffolding
The primary requirement for a gatekeeper AI is to prove that an autonomous AI system satisfies its specification,
such as a quantitative upper bound on the probability of significantly unsafe consequences of its actions.

In order to make such a proof, one must first define the specification with regard to the AI system; in order to
define a specification of safety for an AI system operating as part of a real-world cyber-physical system, one must
define a mathematical model of the dynamics of the environment and context into which the system is deployed.
The specification can then make demands about what occurs in the environment (e.g. that some formally defined
kind of “harm” does not take place with high probability), rather than formal specifications referring only to the
relationship between inputs and outputs of the AI system itself (which is sufficient for defining some nontrivial
properties, like “adversarial robustness”, but not any physical kind of safety). In order to be taken as “ground
truth” about the bounds of what might occur in the deployment environment, to serve as a root of trust for
the system’s certification, these mathematical models must be audited by teams of humans, and therefore the
modelling language in which they are expressed must be both human-understandable and amenable to formal
methods.

But this language cannot be hard-coded by humans, as the pioneers of good old-fashioned AI imagined. As
Sutton put it in The Bitter Lesson[49], “simple ways to think about…the arbitrary, intrinsically-complex, outside
world…are not what should be built in, as their complexity is endless; instead we should build in only the
meta-methods that can find and capture this arbitrary complexity.” As such, the goal of TA1 is not to develop
an ontology (e.g. a list of the kinds of entities in the world and their possible relationships), but as much as
possible, to develop a meta-ontology (e.g. the Semantic Web conceptual framework is a meta-ontology, and the
framework of ordinary differential equations is a different meta-ontology) in which interoperable, compositional
mathematical artefacts can be developed regarding all the causal pathways by which task-specific AI deployments
may cause harm. We envision that these artefacts would be co-developed by human-level or near-human-level AI
“copilots”, under the supervision of human domain experts, mediated by specialised human-computer interface
paradigms designed for this purpose.

Mathematical models are the most fundamental type of artefact in TA1. A mathematical model has rigorous
formal semantics that define a state space and a dynamics. At this level of foundations, we would like to transcend
assumptions that the state space be finite, discrete, or even finite-dimensional; rather, we would like to constrain
the state space only to be σ-compact (a countable union of compact spaces). For cross-domain interoperability,
we would like our modelling language to be a common generalisation of many existing modelling languages
(see Appendix A.1); and we would like our mathematical models to be constructed within a compositional
“doctrine of dynamical systems” with flexible composition patterns[37]. In the same spirit of interoperability
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between modelling frameworks, we would like to transcend assumptions that the dynamics be deterministic,
stochastic, nondeterministic, graphical, or temporal; rather, we would like the basic concept of dynamics to be
any rule that enables one to deduce information about some observables of the system trajectory from information
about others, using an epistemic framework that encompasses both probabilistic (Bayesian) uncertainty and
nondeterministic (Knightian) uncertainty within one monad1.

Formal specifications are predicates about counterfactual probabilities about the distribution of trajectories in
the state space. For example, a specification might require an upper-bound on the counterfactual probability of
someone being harmed by an AI controller (under a resolution of unknowns in which they would not have been
harmed if the AI did nothing):

Eω∼Ω

(
∃v:V Harmed(v)(WorldModel(S 7→ AIController)(ω))

∧¬Harmed(v)(WorldModel(S 7→ DoNothing)(ω))
)
< 10−4

The definition of state-space predicates such as ‘Harmed’ can be expressed in the same modelling language
as state-space dynamics, but counterfactual queries and probabilistic bounds are additional logical primitives,
which are likely best incorporated via an extended language for specifications.

Proof certificates are a quite broad concept, introduced by[33]: a certifying algorithm is defined as one that
produces enough metadata about its answer that the answer’s correctness can be checked by an algorithm which
is so simple that it is easy to understand and to formally verify by hand2. We are very interested in certificates,
because we would like to rely on black-box advanced AI systems to do the hard work of searching for proofs of
our desired properties, yet without compromising confidence that the proofs are correct. In this programme,
we are specifically interested in certificates of behavioural properties of cyber-physical systems (ranging from
simple deterministic functions, to complex stochastic hybrid systems incorporating nuances like nondeterminism
and partiality). To be a bit more specific, the properties of interest are typically universally quantified statements
claiming that if some precondition A is true about a subsystem’s state trajectory x(t) at time t0, then the probability
of some postcondition B being true at time t1 must be within a certain range:
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, θ
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]
Some examples of kinds of certificates that could be useful in proving such quantitative bounds include barrier
certificates[41], reach-avoid supermartingales[56], contraction metrics[50], Alethe certificates[3], LFSC proofs[48],
branch-and-bound certificates[8], certificates based on abstract interpretation or bound propagation[6,11], and
Noetherian induction proofs[47]. Our goal in this programme’s proof certificate language is to unify as many of
these approaches as possible3, to give an AI system maximum flexibility in constructing any sound and valid
argument for its quantitative safety bounds.

Neural systems must be expressible in the modelling language, since the specifications we want to check will
refer to variables which are to be filled in with neural networks, such as the ‘AIController’ variable in the example
specification above. This is no problem for the theoretical semantics of the language because neural networks
are semantically just continuous functions. However, it is a consideration for the data structures, algorithms, and
interface formats, since neural networks tend to be very large, but typically have stereotyped compressible structure
in terms of tensor algebra, of which we would of course want to take advantage. It may be useful to build on the
ONNX format for the interchange of neural network architectures and weights[4]. We refer to “neural systems” to
encompass a broader class of autonomous systems with neural-network components, but which may also include
other algorithms4.

Programmatically, TA1 shall be divided into three technical subareas: TA1.1 Theory, TA1.2 Backend, and
TA1.3 Human-computer interface, each of which covers the entire gamut of {models, specifications,proofs},
but from different perspectives, as follows.

1along the lines of the C↓ monad from [35, Definition 36], the “homogeneous ultracontribution” monad �c from [29, sec 1.1], or the
“convex powerset of distributions monad” [45]

2e.g. using an interactive theorem-proving language such as [36]
3We envision using the more logical and inductive approaches to organise an uncountable and potentially unbounded state space by

Noetherian induction and case analysis of finite partitions, resulting in a finite set of proof obligations regarding only compact state
spaces, each of which can be discharged by some primitive quantitative bounding certificate. Some promising recent work along these
lines includes [51, 57].

4e.g. a runtime-verification decision module that switches between two neural networks
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TA1.1 Theory shall research and construct computationally practical mathematical representations and formal
semantics for world-models, specifications, proofs, neural systems, and “version control” (incremental
updates or patches) thereof.

TA1.2 Backend shall develop a professional-grade implementation of the Theory, yielding a distributed version
control system for knowledge represented as mathematical world-models, as well as for specifications.
The Backend shall also maintain a programmatic interface that can be used by AI-driven machine learning
training loops to “check in” neural networks and verify proofs about them, with the backend producing
counterexamples or informative error messages for invalid proofs. As a stretch goal, the Backend could
also be responsible for “compiling” neural networks into a deployable executable package that has a
high assurance of correctly implementing the exact mathematical function which was verified.

TA1.3 Human-computer interface shall develop a professional-grade user experience for eliciting formal
explainable goals from stakeholders; auditing and editing scientific models; interactively collaborating with
AI modelling assistants; reviewing proven guarantees and sample trajectories; red-teaming; developing
new safety specifications in light of shortfalls; run-time monitoring of whether the incoming data is
consistent with the mathematical model of the environment, especially the propositions claimed about it
in a safety proof, to spot potentially safety-relevant anomalies; and any other aspects of the programme
that are found to require human-computer interaction.

Technical Area 2 (TA2): Machine Learning

Although the “gatekeeper” concept is intended to primarily build on mainstream pre-trained frontier AI models, it
involves forking a frontier model and fine-tuning or “post-training” it in a few different ways in parallel, to assemble
a workflow which transforms one final fork of the frontier model into a verifiably safeguarded AI system5.

An advantage of our approach is that the satisfaction of specifications can be quantitatively verified6, but a
substantial risk from developing a recipe for AI systems that certifiably behave in accordance with arbitrary
specifications is that those specifications may not be adequately informed by all affected stakeholders. To mitigate
this, we have also included sociotechnical control/oversight processes within the scope of TA2.

Programmatically, TA2 shall be divided into four subareas:

TA2.1 World-modelling ML shall fine-tune pre-trained (near-)human-level AI systems to be fluent in TA1’s
new language of scientific world models, to assist teams of human scientists and engineers in formally
describing the operating environment and specifications for any given application(s). This could include
fine-tuned models for:

+ extracting structured data about physical parameters from spreadsheets[26], CAD drawings[55],
unstructured chart images[20], and other formats;

+ proposing ways to use this data to instantiate and populate a composition of probabilistic models,
e.g. [53]

+ applying probabilistic data cleaning techniques[31] to propose patches which make the data consistent
and plausible

+ extracting data from time-series measurements of a system in action, assisting in Bayesian updating
on such data: e.g. by learning to approximate posteriors, by discovering compressed latent
representations for data, by learning an amortised approximate likelihood, etc.[24,42]

+ engaging in structured dialogue threads regarding model components (somewhat analogous to
code review [39]), with humans or potentially with each other

+ extracting mathematical models from scientific papers, e.g. [14]
+ conjecturing mathematical models from data alone, e.g. [46]

TA2.2 Proof-search ML shall fine-tune frontier AI systems as tools that search for proof certificates7 to certify
safety properties of cyber-physical systems with learned components, i.e. that establish an upper bound
on the probability of a learned controller violating a safety specification, to be proof-checked by the
TA1.2 Backend, given assumptions from the world-models output by the TA2.1 World-modelling ML.

5through modified RL training, and likely various forms of compression, such as pruning, distillation, or low-rank decomposition
6potentially even by mutually distrusting entities, via zero-knowledge proofs (e.g. [28]); these come at a substantial but declining

computational cost
7of various potential kinds, e.g. [3, 6, 8, 10, 11, 15, 41, 47, 48, 56, 57]; see the paragraph about proof certificates on page 6
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TA2.3 Training for certifiable ML shall develop an automated “training loop” which is similar to reinforcement
learning, but produces as output an autonomous decision-making system which can be certified as
satisfying the specification, by the proof-search of TA2.2. Potential pathways to achieve this include:

+ Counterexample-Guided RL for Static Verification (e.g. [27]): If the verifier produces specific
examples8 where the specifications fail, these can be incorporated into a training loop as additional
data samples, to augment the usual Monte Carlo rollout trajectories.

+ Runtime Verification (e.g. [34]): Instead of learning a single end-to-end neural network which is
certifiable, the autonomous decision-making system which is certified could contain a version of a
verifier that is fast enough to run in real-time9, which has different tradeoffs.
Also, runtime verification is useful even if a single neural network is certified using static verification,
because it would enhance overall sociotechnical robustness to use runtime verification techniques as
runtime monitoring of functions of the sensor inputs and state estimates that play a role in the safety
proof certificate, to proactively identify potential anomalies in which the true, real-world deployment
environment diverges from what was modelled in an unexpected and potentially safety-relevant way.

+ Probabilistic Shields (e.g. [25, 54]): Runtime verification can also be incorporated into a system
during training if the verifier is differentiable. The combination of differentiability, soundness, and
sufficient computational speed for real-time use may not be tractable for nontrivial world-models,
although a potential breakthrough here would be exciting. Existing shielding techniques may be
useful for reward shaping, alongside runtime verification and/or static verification.

TA2.4 Sociotechnical gate shall develop and amend processes for diverse groups of stakeholders to make
collective deliberations about acceptable risks and safety specifications, suggest quantitative bargaining
solutions that could facilitate multi-objective certifiable ML, and make go/no-go decisions about any new
deployment, release, or publication. This will use the quantitative safety guarantees computed in TA2.2,
via the human-computer interfaces produced in TA1.3, to assure that benefits exceed risks in expectation.

Figure 3: One way of visualising the topical breakdown of subareas in TA1 and TA2 is by considering
kinds of artefact and methodology as orthogonal axes. Note that while most of the machine learning
tasks in TA2 can be decoupled, the TA1 scaffoldings will overlap substantially. Size approximates
estimated cost.

TA2.4

TA2.1 TA2.2TA2.3

TA1.3

TA1.2

TA1.1

World-models Specs Neural nets Certificates

Kinds of mathematical artefact

Social choice theory

Machine learning

Human-computer
user experience

Typechecking
Version control

Databases
Applied maths

Category theory

Methodology

8regions of the state-space Ω of exogenous conditions with a nontrivial probability measure
9In the “black-box simplex architecture” [34], the verifier must certify before every action is output that, after that action is taken, a

backup controller is still very likely capable of stabilising the state into the safe region of state space (without optimising for or achieving
anything other than being verifiably safe). If the certification ever fails or runs out of time for a given action, the system switches to the
backup controller, which was proven at the previous time-step to be able to recover to a stable safe state.
Note that such a system can be certified by an inductive proof.
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Technical Area 3 (TA3): Applications

Ultimately, it does not matter how safe a system is unless it is an acceptable substitute for less safe alternatives. TA3’s
goal is to demonstrate that “gatekeeper AI” as a workflow can be used to create and maintain decision-support
tools and/or safeguarded autonomous AI systems that deliver value in practice for specific tasks. Programmatically,
TA3 will likely consist of 2–4 full teams, each pursuing a different application area using the tools developed
in the other TAs. An initial TA3 Phase 1 will cast a wider net, funding a larger number of part-time efforts to
elicit requirements in application areas and draft models and specifications by hand, in advance of the earliest
prototypes being made available by other TAs.

Application areas suitable for an early demonstration (i.e. within our programme duration) likely fit these criteria:

(a) scalability— an ideal application area can offer a family of problems with “instances” at various scales
of the size or number of entities being modelled, something like this:

+ with n1 it is almost trivial,
+ with n2 it is analytically tractable, but tricky,
+ with n3 it is already practically interesting, but routine for baseline methods,
+ with n4 it is pushing the limits of what seems practical today,
+ and if we could make it practical with n5, that would be a game-changer

(b) known in principle— the primary difficulties involved in this problem area should not include:
+ lack of a solid informal scientific consensus understanding of substantial aspects
+ difficulty of making sufficiently detailed measurements or observations of the phenomenon

Instead, the difficulties should be more like “there’s just a lot of moving parts”
or (less preferably) “it’s just really inefficient to compute”

(c) predictable in principle— not swamped by sensitivity to initial conditions
(d) need for high trust— because of their safety-critical or mission-critical nature, automation and AI solutions

for this application are currently facing serious barriers to adoption due to lack of reliability, which
our methods could directly address

(e) absence of bias or bias mitigation strategy— either we have data which is unaffected by systemic bias,
and/or we have no reason to expect existing large language models distilled from internet text to bring in
systemic bias, or we have a plan in place to avoid the default outcome in which these biases become
encoded and amplified by the model10

(f) large-scale relevance— if humanity mastered automated control over this phenomenon at the larger scales,
it could provide socioeconomic benefits on the scale of hundreds of millions of pounds per year

(g) existing baseline predictor or controller(s)— there’s some approximate and/or costly ways that
large instances are dealt with in practice today, to which new predictive mathematical models and
new decision-making systems could be quantitatively compared

The full set of specific applications is to be determined in the review of responses to the TA3 solicitation, but
some areas we’re currently exploring include:

+ energy system optimisation, e.g.
+ real-time power dispatch to manage supply and demand and respond to perturbations

(especially complex with energy storage and more renewable supply)
+ probabilistic demand forecasting, on various time scales
+ keeping network models up-to-date (e.g. with new rooftop solar installations)
+ long-term planning of transmission network capacity improvements

+ telecommunications network optimisation
+ real-time allocation of beamforming subchannels to optimise transmitter energy consumption
+ management of upstream/backhaul capacity
+ long-term network expansion planning

10Even with a fully explainable and transparent model, there will be free parameters, and if applied to an area such as the dynamics of
crime or social outcomes, both the parameters and the overall structure of the model can encode bias in hard-to-notice ways.
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+ supply chain and inventory management
+ probabilistic demand forecasting
+ distribution requirements planning
+ last-mile delivery routing

+ control systems for robots in human environments
+ medical device control systems
+ optimisation of clinical trials
+ infectious disease epidemiology

+ especially under various intervention scenarios, for decision support
+ incorporating diverse data sources, including metagenomics

+ climate and weather prediction
+ especially under various intervention scenarios

+ transport optimisation
+ aircraft and spacecraft flight dynamics

+ fully autonomous
+ autopilots
+ airspace/traffic control

+ R&D planning
+ roadmapping
+ short-term project management
+ medium-term forecasting
+ long-term R&D portfolio planning

+ complex business processes
+ data integration in contexts where it is usually done by hand to avoid mistakes

Figure 4: The interfaces between all technical subareas can be shown visually as horizontal contacts.

TA2.4 Sociotechnical
gate

TA1.1 Theory: language definitions, formal semantics, non-learning algorithms

TA1.2 Backend: database, version control, proof checker

TA1.3 Human-computer
interface: model code review,
spec elicitation, …

TA2.1 World-modelling ML

TA2.2 Proof-search ML for cyber-physical safety

TA2.3 Training for certifiable ML

TA3 Applications

TA3.1?
Energy system
optimisation?

TA3.2?
Epidemiology;
metagenomics?

TA3.3?
Strategic R&D
planning?
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How we expect to fund
We anticipate staging funding opportunities in the following sequence:

TA1.1 Theory
In this area we would fund researchers for one or two projects each that would be the initial hypothesis for
what they would start working on, but we would hold this hypothesis lightly and assume that on a quarterly
or even monthly cadence, it might make sense to change course and take on a different problem—or,
having definitively solved a certain scoped question, then build on that solution to identify the shape of
the next frontier.
We would suggest an initial list of problems (see Appendix A for an early draft), and would welcome
proposals to tackle those problems head-on, but we are also open to suggestions of related but distinct
theoretical problems.
We expect to have an ongoing collaboration and free flow of ideas between participants in TA1.1. In this
area we would in large part evaluate success by how much participants have built on others’ work and
how much others have built on their work, and in part by subjective review.

TA3 Applications (Phase 0)
In this area we would solicit potential entrepreneurs or existing entities interested in using our gatekeeper
AI workflow to build safeguarded products for specific tasks in a specific sector, with Phase 0 providing
a small amount of funding to deeply understand customer needs and elicit requirements, begin to
source datasets, design evaluation suites to validate the performance of predictive models and autonomous
or semi-autonomous controllers, etc.

TA2 Machine learning (Phase 0)
In this area we would plan to fund a major R&D effort within a single institution, ideally with the following
characteristics:

+ Based in the United Kingdom
+ Co-funded by one or more partner organisations
+ World-class cybersecurity
+ Credible ability to source world-class talent in machine learning research & engineering
+ Decisions to publish algorithms, models, or code, or to release products or API access externally,

should be governed by a diverse board with the sole mission of ensuring that the expected benefits
of AI to humanity and society substantially exceed the risks

+ Flexibility to pursue multilateral information-sharing and strategic partnerships with other private
and/or government-sponsored entities— if and only if determined to align with the mission

Such an institution could be a unit or subsidiary of an existing organisation, or it could be a newly formed
entity. An early Phase 0 would fund initial explorations to put together a full proposal.
Success in TA2 would be evaluated by one or more groups in TA3 Applications, which would each
be building benchmark metrics for performance in a specific application area, such as energy system
optimisation, autonomous aircraft, R&D planning, dexterous manipulation, etc., with one area being
selected for the initial scope of work.

TA1.2 Backend
In this area we would fund 1 or 2 software development organisations (with strong mathematics capabilities)
to elicit concrete requirements from TA1.1 creators for implementation of their theory. If the requirements
engineering process is successful, this would lead to a much larger award to build some or all of the
backend software for the programme’s software platform (with success being evaluated according to those
requirements).

TA1.3 Human-computer interface
In this area we would fund 1 or 2 software development organisations (with strong design/HCI/UX
capabilities) to begin a collaborative process of shaping the requirements for interfaces that can help
humans with diverse ways of thinking to interact with the systems being built in TA1.2 Backend and
TA2.1 World-modelling ML. In this area, success would be evaluated by reviews from users across
all areas of the programme.
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We anticipate that this will be a highly coordinated programme, with quarterly workshops to facilitate teams with
interfaces (the horizontal contact surfaces shown in Figure 4) having opportunities to reach agreements about
syntax and semantics of the formats of information that would flow through such interfaces.

In advance of programme launch we will coordinate with the UK’s AI Safety Institute (AISI) to identify any potential
areas of collaboration.

Intellectual property will be managed differently in each TA:

TA1 work is to be carried out in public by default, with permissively licensed open-source code and documentation,
no patents without a patent non-aggression pledge (example), and all publications available open-access.

This is primarily to accelerate adoption and flow of ideas, but also because in the ultimate vision, the TA1
scaffolding is the platform for a global assurance mechanism that enables multiple actors to verify certificates
from each other’s AI systems proving compliance with internationally agreed norms; the involvement of a
patchwork of proprietary IP rights would complicate such usage.

TA2 work is to be done in a secure environment, with serious measures in place to avoid leaks of model weights
(or even leaks of most concrete algorithmic ideas), for example to include strict NDAs, device policies, etc.
Patents may be filed without a patent non-aggression pledge if the TA2 entity sees fit, but most patentable
inventions in TA2 should more likely be protected as trade secrets.

The TA2 entity should have a robust process in place to review and wisely evaluate potentially beneficial
releases (publications, weights, API availability, commercial licensing—including to TA3 entities, etc.).

This is because, if successful, TA2 work would substantially facilitate AI misuse in addition to reducing the
risk of AI accidents[5], so the outputs must be carefully governed to ensure a net-positive impact, which
implies that in the first instance they must not proliferate irreversibly.

TA3 work, which consists of vertical-domain-specific models, libraries, techniques, and control systems
constructed by TA3 creators using TA1 and TA2 software tools, can be treated in the ordinary way
as the proprietary IP of its creators.

What we are still trying to figure out
+ What are the shortest critical paths for each subarea to get started, e.g. by using a preliminary version of

each dependency, or by acting as an observer?
+ What are the best formats for high-bandwidth interactions to elicit requirements and establish interfaces

and abstractions?
+ Will we attract strong enough participants within the UK—or to the UK—for TA2?
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Appendix A Early draft of example questions to be answered in TA1.1
The following questions were developed in advance of this programme’s first workshop in December 2023.

1. Compositional knowledge representation: Is there a natural framework, along the lines of ACSets[40],
which incorporates schemas as “first-class citizens”, combines the power of relational and algebraic data
types, and facilitates a generic notion of version control for changes to types and schemas (alongside
incremental computation over data)?

2. Unified diagram languages: What are the relationships between ACSets, multiple categories (in the sense
of[17]), and various notions of string diagram (e.g. Zanasi et al’s hierarchical hypernets[1], Hadzihasanovic’s
higher-dimensional rewriting[19], Vicary’s associative n-categories[43], Myers’ string diagrams for double
categories and equipments[38], Boisseau et al’s cornering diagrams[7], Master’s generalised Petri nets[32],
etc.)?

+ In particular, can we build a natural “big tent” framework along the lines of “The Next 700 Programming
Languages”[30] but for categorical systems diagram languages?

3. Doctrines of stochastic hybrid systems: What is the natural construction of a dynamical systems doctrine
(in the sense of[37]) for open SDCPNs (stochastic dynamic coloured Petri nets)[13], or equivalently (up to
bisimilarity), GSHSs (general stochastic hybrid systems)[16]?

+ As a step in that direction, what about “open jump-drift-diffusion equations”?
+ Can we extend this to PDEs and SPDEs?

4. Quantitative bounds: Can we build a “proof system” for establishing convex bounds on the probability
distributions of certain variables in a hybrid system, where the proof can invoke abstractions and approximations
that have certified error bounds?

+ Can we apply this to basis-theoretic discretisations of PDE solutions such as those used in numerical
implementations?

5. Epistemic conservatism: Probabilism is more conservative than determinism, but nondeterminism
(sometimes called “possibilism”) and partiality (or “nontermination”) are distinct forms of epistemic
conservatism that are not dominated by probabilism. The essential reason we cannot leave out nondeterminism
is that not all spaces of possibilities that need to be considered come equipped with a probability measure,
or even a canonical base measure like Lebesgue or Haar (with respect to which a uniform probability
measure could be defined).

+ [35, Definition 36] introduced a monad that combines these three algebraic effects in a natural way
[35, Theorem 38]. Much the same structure (non-empty topologically-closed ⊥-closed convex sets
of subprobability distributions) was discovered independently in[29], motivated entirely by AI safety,
under the almost-equally-unfortunate name “homogeneous ultracontributions”. Can we unify these,
perhaps as non-empty topologically-compact ⊥-closed convex sets of subprobability measures?

+ Can we incorporate this more general semantics into our answers about compositional stochastic
hybrid systems and quantitative bounds?

The group of participants at the workshop also generated several new questions, such as:

1. Knowledge representation and version control via “path-dependent” types and a kind of finite types:
can we construct a type theory in which instances of functional database schemas can be easily represented
(by quantifying over finite types, which correspond to sets of row IDs), and which have a semantics in causal
preorders, using a form of colimit completion to represent potentially-conflicting states of version-control of
such data?

2. Commutative monad of probability, nondeterminism, and partiality: regarding the final question
above, these monads are not commutative, which is very inconvenient for probabilistic programming. Can
we use “variable names” (along the lines of the countably infinite rose tree used to define Ω in[9]) to define
a variant which is commutative, and additionally more closely resembles structural causal models?
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3. Functorial boxes in multiple categories: is there a combinatorial recipe for constructing a multiple-categorical
diagram language that bridges between different multiple categories (with certain multiple functors between
them) by constructing all the “corner” (and “face”) generators?

4. Double categories for branch-and-bound reasoning: can we add a multiple-categorical “dimension”
to a monoidal category to track relational inclusions (like bicategories of relations but with metric/quantale
structure) and use this to define branch-and-bound certificates as double-categorical diagrams?

5. Hybrid doctrines of systems and specification theories: can we use fibrational methods to simultaneously
define specifications and systems, and develop generic constructions of “hybrid systems” (one type of
system fibred over the other), to easily hybridise many different modelling languages?

6. Outcome logic in partial Markov categories[12]: what kind of outcome logic[58] or probabilistic
verification logic (e.g. [44]) is the best suited? could this be a good semantics for abstract states (in the
sense of abstract interpretation[2])?

7. Global safety from local safety: can we use a Grothendieck construction to construct global safety
proofs in a composite system from safety proofs of the components? is this related to rely/guarantee?

Appendix A.1 Initial list of modelling languages we would like to unify
1. Differential equations

(a) ordinary (ODEs)

(b) partial (PDEs)

(c) stochastic (SDEs, SPDEs)

(d) random (RODEs, RPDEs)

(e) jump-diffusion

2. Markov processes

(a) discrete-time Markov chains (DTMCs)

(b) continuous-time Markov chains (CTMCs)

(c) Markov decision processes (MDPs)

(d) Markov automata (MA)

(e) open games

(f) (open?) mean-field games

3. Hybrid systems

(a) Generalised stochastic hybrid systems (GSHS)

4. Petri nets (PNs)

5. Probabilistic models

(a) probabilistic graphical models (PGMs)

i. Bayesian networks (BNs)

ii. structural causal models (SCMs)

iii. Markov random fields (MRFs)

(b) corecursive programs in a functional probabilistic programming language (PPL)

+ including, notably, autoregressive large language models (LLMs)

(c) probabilistic logic programs (ProbLog)

(d) score-based generative models (SBGMs)

+ including, notably, diffusion models
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Appendix B Game theory analysis — modelling assumptions
The crucial considerations regarding the balance of accident risks against misuse risks and economic opportunity
costs in a strategic setting already appear (in terms of Nash equilibrium structure) in the simplest possible
game-theoretic framework, a 2-player normal-form symmetric bimatrix of payoff utilities for two strategies (”Saf”
and ”Main”):

Player A chooses safe design Player A chooses mainstream
Player B chooses safe design A: U(Saf,Saf), B: U(Saf,Saf) A: U(Main,Saf), B: U(Saf,Main)
Player B chooses mainstream A: U(Saf,Main), B: U(Main,Saf) A: U(Main,Main), B: U(Main,Main)

A simple model of the four expected utility variables is based on the following assumptions:

1. Ultimately, there are eight possible unmixed outcomes, spanned by the 3 binary variables

{LoseRace,WinRace} × {SafeDesign,Mainstream} × {Accident,Aligned}

2. Accident is a Bernoulli random variable whose probability is reduced by SafeDesign:

P(Accident|SafeDesign) < P(Accident|Mainstream)

3. For simplicity, we assume that there are values 0 < α ≤ 1, 0 < β ≤ 1, such that

U(SafeDesign ∧ · · · ) = α · U(Mainstream ∧ · · · ) + (1− α) · U(Accident)

(i.e. α is the fraction of Mainstream economic value/utility that can still be gained via SafeDesign), and

U(LoseRace ∧ Mainstream ∧ Aligned) = β · U(WinRace ∧ Mainstream ∧ Aligned)

(i.e. β is the fraction of value that is retained even if one loses the race to an unleashed opponent).
4. Because SafeDesign methods should be used to end the acute risk period as soon as possible, the economic

loss α (from restricting scaling to only SafeDesign systems) is only during an initial period of T years, when
economic returns are a factor of α0 less, accounted for with an annual discount factor of γ:

α =

∫ T
0 α0γ

tdt+
∫∞
T γtdt∫∞

0 γtdt
= α0(1− γT ) + γT

We use the US FEDFUNDS rate at time of writing (5.33%) to set the default discount factor,
γ = 1/(1 + 5.33%), to reflect the time-preference of large-scale capital flows.

5. Because a SafeDesign (in our vision/definition) would be multilateralist, we assume

U(LoseRace ∧ SafeDesign) ≥ 99% · U(WinRace ∧ SafeDesign)

6. If both players have the same strategy, WinRace will be 50%.
7. P(WinRace|Saf,Main) is very low, but if this event takes place, it implies a SafeDesign:

WinRace ∧ (Saf,Main) ⇒ SafeDesign

8. If A and B both play Saf, then the outcome will be a SafeDesign.

(Saf,Saf) ⇒ SafeDesign

9. In case of Accident, WinRace or LoseRace, SafeDesign or Mainstream... don’t matter.
10.Without loss of generality (since utilities are invariant under affine transformation), we let

U(Accident) = 0

U(WinRace ∧ Aligned ∧ Mainstream) = 1

ARIA Copyright 2024 p. 18 / 19



For the purposes of Figure 2 we have selected the following parameters:

P(Accident|SafeDesign) = 0.6%
P(Accident|Mainstream) = 50% (“minimally confident”, per Wasserstein11)
P(WinRace|Saf,Main) = 5%

β = 10%

γ =
1

1 + 5.33%

The remaining parameters of the model (α0 and T ) are the x and y axes of Figure 2, respectively.

At the specific point marked “Reality after a successful programme”, we have T = 10 years and α0 = 16.9%,
which implies α ≈ 66%. This yields the outcome payoffs:

WinRace LoseRace
Aligned ∧ Mainstream 1.00 0.10
Aligned ∧ SafeDesign 0.66 0.65

Accident ∧ Mainstream 0.00 0.00
Accident ∧ SafeDesign 0.00 0.00

and the expected utility variable values:
Other

Saf Main

Self Saf 0.66 0.08
Main 0.51 0.28

Figure 5: The sensitivity of the expected utility variables at (α0 = 16.6%, T = 10 years) to
P(Accident|Mainstream), at a “distant future” discount rate of γ = 1/(1+1%)[52]. The structure
of the bimatrix game changes where the payoff lines cross, from Prisoner’s Dilemma at the left
to Stag Hunt in the middle to No Conflict at the extreme right.

11It is a common mistake to implicitly assume a privileged reference measure µ on a set like {Accident,Aligned}, which is also
necessary to argue from “maximum entropy” or “minimum information” that one should privilege a probability measure ν, like so:

ν = argminν DKL(ν | µ) = argminν
∫
Ω

dν(ω) log
(
dν
dµ (ω)

)
Counting measure can be justified by permutation-invariance, but there is no reason to assume that a set like this is permutation-invariant.
However, if we have a pseudometric on the outcome space Ω, we can instead argue for the Wasserstein barycenter as the “least
confident” measure,

ν = argminν argmaxµ W1(ν, µ)

Given a utility function U : Ω → R, we do indeed have a pseudometric on Ω = {Accident,Aligned}, namely d(x, y) = |U(x)−U(y)|,
and it can be shown that the “least confident” Wasserstein barycenter puts 50% probability mass on each of {Accident,Aligned}.
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